Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Heather J. Gilfoy, ${ }^{\text {a }}$ Katherine N. Robertson, ${ }^{\text {b }}$ T. Stanley Cameron ${ }^{\text {b }}$ and Manuel A. S. Aquino ${ }^{\text {a* }}$
${ }^{\text {a Department of Chemistry, St. Francis Xavier }}$ University, PO Box 5000, Antigonish, Nova Scotia, Canada B2G 2W5, and ${ }^{\mathbf{b}}$ Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J3

Correspondence e-mail: maquino@stfx.ca

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$
Disorder in solvent or counterion
$R$ factor $=0.043$
$w R$ factor $=0.131$
Data-to-parameter ratio $=11.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

# Tetra- $\mu$-acetato- $O: O^{\prime}$-bis(quinoline- $N$ )diruthenium (II,III) hexafluorophosphate quinoline solvate 

The title complex, $\left[\mathrm{Ru}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right] \mathrm{PF}_{6} \cdot \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}$, shows a binuclear cage structure having an inversion center. There are weak intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions between the quinoline ligands and the bridging acetate O atoms.

## Comment

Only a few $N$-donor heterocycle axial diadducts of diruthenium(II,III) tetracarboxylate, $\quad\left[\mathrm{Ru}_{2}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{4}\right.$ ( $N$-heterocycle $\left.)_{2}\right] X(R=$ alkyl or aryl, $X=$ counter-ion $)$, have been structurally characterized. Most of these involve pyridine or pyridine derivatives (Cotton et al., 1998; Vamvounis et al., 2000) and one example of biological relevance employing 2-methylimidazole as the axial ligand (Sudha \& Chakravarty, 1998). This latter complex displayed a weak intermolecular hydrogen bonding interaction between the non-bound nitrogen and an oxygen on the perchlorate counterion.

(I)

As $\left.\mathrm{Ru}_{2}\left(\mathrm{O}_{2} \mathrm{CR}\right)\right)_{4} \mathrm{Cl}\left(R=\mathrm{CH}_{3}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ complexes have shown small but significant antitumor activity (Keppler et al., 1989), we sought to investigate the binding of various nucleoside bases to the diruthenium(II,III) tetracarboxylate core and focus on the structural aspects of this binding, in particular, any intramolecular hydrogen bonding. In addition to looking at nucleoside base adducts, we wanted to study similar and simpler diadducts that were soluble in nonaqueous media. Molecule (I) is one such complex. While it contains typical $\mathrm{Ru}-\mathrm{Ru}, \mathrm{Ru}-\mathrm{O}$ and $\mathrm{Ru}-\mathrm{N}$ bond lengths and angles (Table 1), it displays trans-oriented axially bound quinoline rings with weak intramolecular interactions between the acetate O atoms and $\mathrm{C}-\mathrm{H}$ bonds of bound quinolines. Four of these are given in Table 2, the strongest of which is C12-H12 $\cdots$ O3.

## Experimental

Quinoline ( 0.64 mmol ) was added dropwise to a 5 ml solution of $\left[\mathrm{Ru}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{PF}_{6}(0.16 \mathrm{mmol})$ in 2-propanol. The solution

Received 11 September 2001
Accepted 28 September 2001 Online 6 October 2001
was stirred for 5 min and the gold-brown product filtered and dried. Crystals could be grown by slow evaporation from dichloromethane.

## Crystal data

$\left[\mathrm{Ru}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{4}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right] \mathrm{PF}_{6} \cdot \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.689 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=39.5-40.0^{\circ} \\
& \mu=7.54 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, red-brown } \\
& 0.55 \times 0.35 \times 0.30 \mathrm{~mm}
\end{aligned}
$$

## Data collection

Rigaku AFC-5R diffractometer $\omega-2 \theta$ scans
Absorption correction: $\psi$ scan (North et al., 1968)
$T_{\text {min }}=0.446, T_{\text {max }}=1.000$
3253 measured reflections
3089 independent reflections
2555 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.078 \\
& \theta_{\max }=64.9^{\circ} \\
& h=0 \rightarrow 14 \\
& k=-12 \rightarrow 12 \\
& l=-8 \rightarrow 8 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 150 \text { reflections } \\
& \quad \text { intensity decay: } 8.4 \%
\end{aligned}
$$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.131$
$S=1.05$
3089 reflections
260 parameters
H -atom parameters constrained


Figure 1
The structure of (I) with displacement ellipsoids drawn at the $50 \%$ probability level. The quinoline molecule of solvation and the heaxafluorophosphate counterion have been omitted.
for each $A / B$ pair. The fluoride $\mathrm{A} / \mathrm{B}$ distances were restrained to 0.80 (2) $\AA$ and the $\mathrm{P}-\mathrm{F}$ distances to 1.58 (2) $\AA$. The incorporated solvent molecule of quinoline was also found to be disordered. The N atom of the solvent was allowed to occupy each of the four possible positions equally, each with an occupancy of 0.25 . The bonds across the top of the solvent rings were made equal in length, while the edge bonds (those not involving nitrogen), were restrained to 1.39 (1) A. Similarly, in the coordinated quinoline molecule the $\mathrm{C}-\mathrm{C}$ bond lengths were restrained to 1.39 (1) $\AA$. The highest peaks and deepest holes in the final difference map were located at distances less than 1.1 Å from the heavy metal atom.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997-1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: TEXSAN for Windows; software used to prepare material for publication: SHELXL97.

MASA thanks NSERC (Canada) and UCR for funding.

## References

Altomare, A., Cascarano, G. L., Giacovazzo, C. \& Guagliardi. A. (1994). J. Appl. Cryst. 26, 343.
Cotton, F. A., Lu, J. \& Yokochi, A. (1998). Inorg. Chim. Acta, 275-276, 447452.

Keppler, B. K., Henn, M., Juhl, U. M., Berger, M. R., Niebl, R. \& Wagner, F. E. (1989). Prog. Clin. Biochem. Med. 10, 41-69.

Molecular Structure Corporation (1994). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1997-1999). TEXSAN for Windows. Version 1.06. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sudha, C. \& Chakravarty, A. R. (1998). Indian J. Chem. A, 37, 1-6.
Vamvounis, G., Caplan, J. F., Cameron, T. S., Robertson, K. N. \& Aquino, M. A. S. (2000). Inorg. Chim. Acta, 304, 87-98.

